pubs.acs.org/joc

Halonium Ion-Assisted Deiodination of Styrene-Based Vicinal Iodohydrins Followed by Rearrangement through Phenyl Migration

Manoj K. Agrawal and Pushpito K. Ghosh*
Central Salt and Marine Chemicals Research Institute (Council of Scientific \& Industrial Research), G. B. Marg, Bhavnagar 364 002, Gujarat, India
pkghosh@csmcri.org

Received July 10, 2009

Acid activation of bromate/bromide couple at $0-10{ }^{\circ} \mathrm{C}$ was found to trigger the deiodination of styrene-based vicinal iodohydrins. Violet coloration of the organic layer was ascribed to formation of IBr. Deiodination was followed by phenyl migration and deprotonation leading to formation of phenyl acetone and 2-phenylpropanal in good yields from 1-iodo-2-phenylpropan-2-ol and 2-iodo-1-phenylpropan-1-ol, respectively. Phenyl acetal-dehyde-which was obtained in 92% GC yield from styrene iodohydrin-was also presumably formed in analogous manner. NBS and HOCl too were effective for transformation of styrene iodohydrin into phenyl acetaldehyde.

Oxidizing agents such as m-CPBA are known to convert alkyl iodides into the corresponding alcohols in nonpolar solvent and even to olefins through syn elimination when strongly electron-attracting groups such as carbomethoxy or sulfonyl are present at α position. ${ }^{1}$ There are also several reports in the literature on formation of hypervalent iodo

[^0]compounds with oxidizing agents, ${ }^{2}$ including the formation of $\mathrm{R}-\mathrm{ICl}_{2}{ }^{2 \mathrm{a}}$ and $\mathrm{R}-\mathrm{I}=\mathrm{O} / \mathrm{R}-\mathrm{IO}_{2}{ }^{2 \mathrm{~b}}$ when RI is treated with chloronium or bromonium ion. We report here the observation of deiodination-cum-phenyl group migration when styrene-based iodohydrins were reacted with reagents bearing bromonium and chloronium ions.

When a stoichiometric amount of acid-activated $\mathrm{BrO}_{3}^{-} / \mathrm{Br}^{-}$ (1:2 molar ratio) (eq 1) was reacted with 2-bromo-1-phenylethanol, the solution gradually turned colorless, and bromomethylene phenyl ketone was obtained in 98% yield. In marked contrast, when a similar reaction was attempted with 2-iodo-1-phenylethanol, the solution turned violet in color and the product obtained was identified as phenyl acetaldehyde based on GC retention time and mass fragmentation pattern vis-à-vis standard sample (Supporting Information, entry 1, Table S 1). Stirring was sufficient but not so vigorous as to mix up the two phases. The UV-vis absorption spectral profile of the product mixture matched that of IBr (prepared from I_{2} and Br_{2}) (Figure 1), ${ }^{3}$ and the absorbance data indicated that all of the iodide from substrate and bromide from reagent were transformed into IBr at the end of the reaction. When the reaction was studied using a range of solvents, the maximum yield of phenyl acetaldehyde was obtained with 3:1 (v/v) ethylene dichloride (EDC)/water (Supporting Information, entry 1 , Table S 1) which was the initial solvent composition chosen.

$$
\begin{equation*}
\mathrm{NaBrO}_{3}+2 \mathrm{NaBr}+3 \mathrm{H}^{+} \rightarrow 3 \mathrm{HOBr}+3 \mathrm{Na}^{+} \tag{1}
\end{equation*}
$$

Keeping the solvent composition fixed, and maintaining the temperature between 0 and $10{ }^{\circ} \mathrm{C}$, ${ }^{4}$ the reaction with 2-iodo-1-phenylethanol was studied employing several different bromonium ion-generating reagents (Supporting Information, Table S2). The highest yield (92.1%) of phenyl acetaldehyde was obtained with $4: 1 \mathrm{NaBrO}_{3} / \mathrm{NaBr}$ (entry 1, Table 1). ${ }^{5} \mathrm{HOCl}$ also yielded the same product, albeit in lower (74.8%) yield, whereas the reaction failed with $1: 2$ $\mathrm{IO}_{3}^{-} / \mathrm{I}^{-}$and I_{2} (Supporting Information, entries 5 and 6 , Table S2). The reaction with $4: 1 \mathrm{BrO}_{3}^{-} / \mathrm{Br}^{-}$was extended to iodohydrins of other styrene derivatives (Table 1). Iodohydrins of the aromatic substituted styrene derivatives studied gave the corresponding phenyl acetaldehydes in $59-85 \%$ yields (entries $2-6$, Table 1). The low yield in case of entry 3 was on account of appreciable formation of side products, while the low yield in the reaction of entry 4 was due to low conversion (see the GC-MS in the Supporting Information). Since phenyl acetaldehyde gave complex NMR spectra in CDCl_{3}, the above products were converted into their 2,4-DNP derivatives for characterization confirmation. The crystal structure was also obtained of the derivative of entry 2 (Supporting Information, Figure S1). Iodohydrins of styrene derivatives with side-chain substitution were also investigated

[^1]

Figure 1. UV-vis spectra of $5.54 \times 10^{-4} \mathrm{M} \mathrm{I}_{2}, \mathrm{Br}_{2}$, and IBr (prepared from I_{2} and Br_{2}) in EDC and of diluted product mixture obtained from the reaction (in 25 mL of EDC) of 2-iodo-1-phenylethanol ($5.54 \times 10^{-3} \mathrm{~mol}$) with acid-activated $1: 2 \mathrm{BrO}_{3}^{-} / \mathrm{Br}^{-}$ (containing $5.54 \times 10^{-3} \mathrm{~mol}$ of total Br). The organic layer was diluted 500 times with EDC prior to recording the spectrum.
(entries 7-10, Table 1). Cinnamic acid iodohydrin gave phenyl acetaldehyde in 74.7% yield under the optimized reaction conditions, while at room temperature, both phenyl acetaldehyde and acetophenone were formed in ca. 55% and 45% GC yields, respectively (Supporting Information). When the reaction was carried out with the iodohydrin of methyl cinnamate, methyl 3-oxo-3-phenylpropanoate was obtained as the sole product in 61.9% yield. 1-Iodo-2-phenylpropan-2-ol and 2-iodo-1-phenylpropan-1-ol gave phenylacetone and 2-phenylpropanal in 64% and 69% yields, respectively (entries 9 and 10, Table 1). Identities of both products were cross-checked by solving the crystal structures of their 2,4-DNP derivatives (Supporting Information, Figures S2 and S3). 2-Iodocyclohexanol was also subjected to reaction under the same conditions. The ring-contracted product, cyclopentanecarbaldehyde, was obtained in 21.7% yield. Iodohydrins of linear olefins (1-hexene; 1-octene) yielded only complex mixtures of products.

The results of entries 9 and 10 of Table 1 can be rationalized on the basis of bromonium ion-induced deiodination and accompanying phenyl group migration. With regard to the reactions of entries $1-6$, these too may be explained through phenyl migration. Formation of phenyl acetaldehyde via epoxide formation and O-migration is, of course, the well-known pathway of the Meinwald rearrangement, which is less likely with the present methodology. ${ }^{6-8}$ The reaction of entry 7 must have also occurred through phenyl group migration since O-migration would have yielded phenylpyruvic acid instead. Deiodination and phenyl group
(6) GC -MS of the product mixtures of the reactions in Table 1 indicated traces of epoxide which may have formed as an impurity, presumably via a competing pathway.
(7) Meinwald, J.; Labana, S. S.; Chadha, M. S. J. Am. Chem. Soc. 1963, 85, 582.
(8) (a) Sudha, R.; Narasimhan, K. M.; Saraswathy, V. G.; Sankararaman, S. J. Org. Chem. 1996, 61, 1877. (b) Kulasegaram, S.; Kulawiec, R. J. J. Org. Chem. 1997, 62, 6547. (c) Ranu, B. C.; Jana, U. J. Org. Chem. 1998, 63, 8212. (d) Robinson, M. W. C.; Pillinger, K. S.; Graham, A. E. Tetrahedron Lett. 2006, 47, 5919. (e) Miyamoto, K.; Okuro, K.; Ohta, H. Tetrahedron Lett. 2007, 48, 3255. (f) Tiffeneau, M. Bull. Soc. Chim. Fr. 1908, 1,1205 and references cited therein.

TABLE 1. Reactions of Styrene-Based Iodohydrins with 4:1 $\mathrm{BrO}_{3}^{-} / \mathrm{Br}^{-a}$

Entry	Substrate ${ }^{\text {b }}$ T	Time (h)	Conversion	Product ${ }^{\text {c }}$	Yield ${ }^{\text {d }}$ (\%)
1		3	100		92.1
2		3	100		80.7
3		3	100		59.1
4		3	67.3		67.3
5		3	80.4		74.2
6		3	90.3		85.1
7		6	100		74.7
8		6	61.9		61.9
9		2	100		64.0
10		3	100		69.0

${ }^{a} \mathrm{BR}-\mathrm{O}=4: 1 \mathrm{NaBrO}_{3} / \mathrm{NaBr} ; 0.43 \mathrm{~mol}$ total of Br taken per mole of substrate; 0.5 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$ taken per mole of substrate for all reactions; all reactions were carried out between 0 and $10^{\circ} \mathrm{C}$ under gentle stirring. ${ }^{b}$ Substrate amount varied from 3 to 14 mmol . ${ }^{c}$ Product identity was initially assessed through analyses of mass fragmentation pattern in the GC-MS of the crude product mixture and later on through preparation of 2,4-DNP derivatives of all the compounds except those in entries 5, 7, and $8 .{ }^{d}$ Yield refers to GC area \% recorded for crude product mixture after workup. Note that GC-MS of entries 4 and 8 showed only peaks due to starting material and product (Supporting Information), which is why the conversion and yield are identical in these cases.

SCHEME 1. Probable Reaction Pathway of the Bromonium Ion-Assisted Styrene-Based Iodohydrin Rearrangement

migration in the above cases may occur synchronously as shown in Scheme 1. Abstraction of I^{-}by Br^{+}would yield $\mathrm{IBr},{ }^{9}$ formation of which is evident from Figure 1. (Note, however, that IBr can also form from I_{2} and Br_{2}.) The

[^2]influence of substituents at the 2-position would be dictated by electronic effects such as inductive, π-donation (toward formation of nonclassical carbonium ion), and hyperconjugative stabilization effects. ${ }^{10}$ The effective π-donating ability of the phenyl substituent toward the stabilization of the carbocation intermediate may be responsible for the observed phenyl group migration in these cases. B3LYP/ LACVP* energy calculation on the substrate of entry 1 , Table 1, further suggests that the ground-state energy is lowest when the phenyl group is antiperiplanar to the leaving iodo group. This too would facilitate phenyl group migration. ${ }^{11} \mathrm{H}$-Migration occurred to a small extent ($2-3 \%$) with styrene iodohydrin when the reaction temperature was raised from $10{ }^{\circ} \mathrm{C}$ to room temperature, ${ }^{4}$ whereas in the case of entry 7 the two pathways were equally facile at room temperature given the similar proportions of phenyl acetaldehyde and acetophenone formed. The reaction of entry 8 provided the sole example in which the migratory aptitude of hydrogen was higher than that of the phenyl group. ${ }^{12}$

In conclusion, we have chanced upon an interesting reaction involving halonium ion-assisted electrophilic deiodination of styrene-based iodohydrins with accompanying phenyl group transfer at $0-10{ }^{\circ} \mathrm{C}$, the reaction with the iodohydrin of methyl cinnamate being the only case where H-migration was preferred over phenyl migration. Although several reagents were effective, the best yields were obtained with acid-activated bromate/bromide ($4: 1 \mathrm{~mol}$ ratio) which is a source of reactive bromonium ion.

Experimental Section

General Procedure for Reaction of Iodohydrins with 4:1 $\mathrm{BrO}_{3}{ }^{-} / \mathrm{Br}^{-}$(Entry 1, Table 1). 2-Iodo-1-phenylethanol (744 $\mathrm{mg}, 3.0 \mathrm{mmol})^{13}$ and EDC $(12 \mathrm{~mL})$ were taken in a 50 mL round bottomed flask and stirred in water bath at $0-10{ }^{\circ} \mathrm{C}$. To the above solution was added 177 mg of $4: 1 \mathrm{NaBrO}_{3} / \mathrm{NaBr}[1.0 \mathrm{mmol}$ $\left.\mathrm{NaBrO}_{3}+0.25 \mathrm{mmol} \mathrm{NaBr}\right]$ in 2.0 mL of water followed by $\mathrm{H}_{2} \mathrm{SO}_{4}(1.5 \mathrm{mmol}$ in 1 mL water) in one portion under gentle magnetic stirring, ensuring that the two phases were maintained separate (Schotten-Baumann condition). Stirring was continued for 3.0 h under the same conditions. The reaction mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL} \times 3)$. The combined organic layers were washed with aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. Finally, the layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to get crude product (92.1% yield by GCMS area \%).

General Procedure for Preparation of the (2,4-Dinitrophenyl)hydrazine Derivatives of Carbonyl Compounds Obtained from the Reactions of Iodohydrins with 4:1 $\mathrm{BrO}_{3}^{-} / \mathrm{Br}^{-}$(Entry 1, Table 1). To the crude product obtained in the above step was added

[^3]0.5 equiv of (2, 4-dinitrophenyl)hydrazine and dry THF until a clear solution was obtained. The reaction mixture was refluxed for 4 h employing a CaCl_{2} guard tube. The reaction mixture was allowed to cool to room temperature, and methanol was added until turbidity was seen. This solution was allowed to chill at $-15{ }^{\circ} \mathrm{C}$ and the precipitate filtered. The derivatives of the products of entries 2,4 , and 6 were recrystallized from $\mathrm{CHCl}_{3} /$ petroleum ether at room temperature, while those for entries 9 and 10 were recrystallized from THF/ CCl_{4}. The dried solid was characterized using ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}, ~ I R, ~ M S, ~ D S C, ~ a n d ~$ microanalysis (C, H, N) techniques. C, H , and N values indicate percent (w/w). Data for characterized compounds are provided below. Products of entries 5, 7, and 8 were identified on the basis of $\mathrm{GC}-\mathrm{MS}$ of the crude product mixtures.

1-(2,4-Dinitrophenyl)-2-(2-phenylethylidene)hydrazine (Entry 1, Table 1). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 3.76(\mathrm{~d}, J(\mathrm{H}, \mathrm{H})=$ $5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.62(\mathrm{~d}, J(\mathrm{H}, \mathrm{H})=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.97(\mathrm{~d}, J(\mathrm{H}, \mathrm{H})=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J(\mathrm{H}, \mathrm{H})=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $9.09(\mathrm{~s}, 1 \mathrm{H}), 11.04(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$: 39.07, 116.6, 123.4, 127.2, 129.0, 130.0, 135.4 (quat-C), 137.9 (quat-C), 145.1 (quat-C), 148.7 (quat-C), 150.4 ppm. IR (KBr) $\nu_{\text {max }}: 3293,3101,1618,1592,1332,1306,1262,1215,1139,1075$, $917,841,742,700,594 \mathrm{~cm}^{-1}$. GCMS (70 eV) $\mathrm{m} / \mathrm{z}: 300.10\left[\mathrm{M}^{+}\right]$, obsd $323.61\left[\mathrm{M}^{+}+\mathrm{Na}\right]$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 56.00 , H, 4.03; N, 18.67. Found: C, 57.04, H, 4.07; N, 17.16. Mp: $112-113^{\circ} \mathrm{C}$.

1-(2,4-Dinitrophenyl)-2-(2-p-tolylethylidene)hydrazine (Entry 2, Table 1). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 2.34(\mathrm{~s}, 3 \mathrm{H}), 3.70$ (s, $2 \mathrm{H}), 7.13-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.57(\mathrm{t}, J(\mathrm{H}, \mathrm{H})=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.96$ $(\mathrm{d}, J(\mathrm{H}, \mathrm{H})=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{dd}, J 1(\mathrm{H}, \mathrm{H})=10.0$ and $J 2(\mathrm{H}$, $\mathrm{H})=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.09(\mathrm{~d}, J(\mathrm{H}, \mathrm{H})=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 11.03(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (CDCl $\left.{ }_{3}, 125 \mathrm{MHz}\right) \delta: 20.5,38.1,116.0,122.9,128.3$, 129.1, 129.4, 131.7 (quat-C), 136.4 (quat-C), 137.4 (quat-C), 144.6 (quat-C), 148.5 (quat-C), 150.1. IR (KBr) $v_{\text {max }}: 3278$, 3055, 2919, 2358, 1614, 1513, 1425, 1327, 1129, 1066, 1043, $915,811,740,561,515 \mathrm{~cm}^{-1}$. MS (70 eV) $\mathrm{m} / \mathrm{z}:$ calcd $314.30\left[\mathrm{M}^{+}\right]$, obsd $345.57\left[\mathrm{M}^{+}+\mathrm{Na}\right]$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 57.32; H, 4.49; N, 17.83. Found: C, 57.70; H, 4.46; N, 17.74. Mp: $148-149{ }^{\circ} \mathrm{C}$.

1-(4-tert-Butylstyryl)-2-(2,4-dinitrophenyl)hydrazine (Entry 3, Table 1). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 1.37$ ($\mathrm{s}, 9 \mathrm{H}$), 2.22-2.58 $(\mathrm{m}, 1 \mathrm{H}), 3.73-3.75(\mathrm{t}, J(\mathrm{H}, \mathrm{H})=6.5 \mathrm{~Hz}), 7.57(\mathrm{~d}, J(\mathrm{H}, \mathrm{H})=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 8.05(\mathrm{~d}, J(\mathrm{H}, \mathrm{H})=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}$, $J(\mathrm{H}, \mathrm{H})=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 9.16(\mathrm{~d}, J(\mathrm{H}, \mathrm{H})=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 15.61(\mathrm{~s}$, 1H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta: 30.5,30.7$ (quat-C), 116.7, 122.4 (quat-C), 125.7 125.8, 125.9, 128.3, 129.2, 130.3, 133.1 (quat-C), 143.9 (quat-C), 158.1 (quat-C). IR (KBr) $v_{\text {max }}: 3291$, 3106, 3026, 2924, 1614, 1591, 1508, 1413,1333, 1270, 1217, 1136, $1069,1045,790,602,470 \mathrm{~cm}^{-1}$. MS (70 eV) m/z: calcd 356.32 $\left[\mathrm{M}^{+}\right]$, obsd $356.63\left[\mathrm{M}^{+}\right]$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 60.66; H, 5.66; N, 15.72. Found: C, 57.57; H, 4.22; N, 14.72 (halogencontaining impurities in the product may have depressed the C, H, N values). $\mathrm{Mp}: 200-202^{\circ} \mathrm{C}$.

1-(2-(4-Bromophenyl)ethylidene)-2-(2,4-dinitrophenyl)hydrazine (Entry 4, Table 1). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 3.71(\mathrm{~d}, J(\mathrm{H},-$ $\mathrm{H})=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J(\mathrm{H}, \mathrm{H})=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J(\mathrm{H},-$ $\mathrm{H})=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J(\mathrm{H}, \mathrm{H})=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.31$ $(\mathrm{d}, J(\mathrm{H}, \mathrm{H})=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.09(\mathrm{~s}, 1 \mathrm{H}), 11.07(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta: 38.4,116.5,121.2$ (quat-C), 123.4, 129.1 (quat-C), 130.0, 130.7, 132.0, 134.4 (quat-C), 138.1 (quat-C), 145.0 (quat-C), 149.3 ppm . IR (KBr) $v_{\text {max }}: 3291,3106,3026,2924,1614$, 1591, 1508, 1413,1333, 1270, 1217, 1136, 1069, 1045, 790, 602, 470 $\mathrm{cm}^{-1} .\left(\mathrm{MS}(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}: 377.99\left[\mathrm{M}^{+}\right] / 379.99\left[\mathrm{M}^{+}+2\right]\right.$, obsd 401.46 $\left[\mathrm{M}^{+}+\mathrm{Na}\right] / 403.46\left[\mathrm{M}^{+}+2+\mathrm{Na}\right]$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrN}_{4}{ }^{-}$ O_{4} : C, 44.52; H, 2.92; N, 14.78. Found: C, 44.18; H, 2.57; N, 14.44. Mp: $153-154{ }^{\circ} \mathrm{C}$.

1-(2-(4-(Chloromethyl)phenyl)ethylidene)-2-(2,4-dinitrophenyl)hydrazine (Entry 6, Table 1). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 3.76$
$(\mathrm{d}, J(\mathrm{H}, \mathrm{H})=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 7.26-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.59(\mathrm{t}$, $J(\mathrm{H}, \mathrm{H})=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J(\mathrm{H}, \mathrm{H})=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{dd}$, $J 1(\mathrm{H}, \mathrm{H})=2.5$ and $J 2(\mathrm{H}, \mathrm{H})=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.08(\mathrm{~d}, J(\mathrm{H}, \mathrm{H})=2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 11.05(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta: 38.2,45.3$, 116.0, 122.9 (quat-C), 127.8 (quat-C), 128.5, 128.7, 128.8, 128.9, 129.5, 135.2 (quat-C), 144.5 (quat-C), 149.3. IR (KBr) $v_{\max }: 3299$, $3095,2925,2856,1618,1592,1423,1332,1311,1266,1133,1076$, 832, 741, 720, 679, 593, $508 \mathrm{~cm}^{-1}$. MS (70 eV) m / z : calcd 348.06 $\left[\mathrm{M}^{+}\right] / 350.08\left[\mathrm{M}^{+}+2\right]$, obsd $347.62\left[\mathrm{M}^{+}\right] / 349.60\left[\mathrm{M}^{+}+2\right]$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{O}_{4}$: C, 51.66; H, 3.76; N, 16.07. Found: C, 51.73; H, 3.79; N, 15.98. Mp: 116-130 ${ }^{\circ} \mathrm{C}$.

1-(2,4-Dinitrophenyl)-2-(1-phenylpropan-2-ylidene)hydrazine (Entry 9, Table 1). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 2.00(\mathrm{~s}, 3 \mathrm{H})$, $2.73(\mathrm{~s}, 2 \mathrm{H}), 7.25-7.36(\mathrm{~m}, 5 \mathrm{H}), 8.00(\mathrm{~d}, J(\mathrm{H}, \mathrm{H})=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.31(\mathrm{dd}, J 1(\mathrm{H}, \mathrm{H})=2.5$ and $J 2(\mathrm{H}, \mathrm{H})=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.12(\mathrm{~d}$, $J(\mathrm{H}, \mathrm{H})=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 11.05(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ MHz) $\delta: 14.9,44.9,116.0,122.9$ (quat-C), 126.6, 128.3, 128.5, 129.5, 135.6 (quat-C), 137.3 (quat-C), 144.7 (quat-C), 156.1 (quat-C). IR (KBr) $v_{\text {max }}: 3299,3095,2925,2856,1618,1592$, 1423, 1332, 1311, 1266, 1133, 1076, 832, 741, 720, 679, 593, 508 cm^{-1}. MS $(70 \mathrm{eV}) m / z$ calcd $314.10\left[\mathrm{M}^{+}\right]$, obsd $315.55\left[\mathrm{M}^{+}+\right.$ H^{+}]. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, $57.32 ; \mathrm{H}, 4.49 ; \mathrm{N}, 17.83$. Found: C, 56.77 ; H, 4.50 ; N, 17.44. Mp: $144-145^{\circ} \mathrm{C}$.

1-(2,4-Dinitrophenyl)-2-(2-phenylpropylidene)hydrazine (Entry 10, Table 1). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 1.58(\mathrm{~d}, J(\mathrm{H}, \mathrm{H})=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.85(\mathrm{q}, J(\mathrm{H}, \mathrm{H})=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.60(\mathrm{~m}, 6 \mathrm{H})$, $7.97(\mathrm{~d}, J(\mathrm{H}, \mathrm{H})=9.5 \mathrm{~Hz}, 1 \mathrm{H}) 8.31(\mathrm{~d}, J(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $9.10(\mathrm{~s}, 1 \mathrm{H}), 11.02(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta:$
18.0, 42.5, 116.1, 122.9 (quat-C), 126.8, 127.0, 128.5, 129.5, 140.7 (quat-C), 144.7 (quat-C), 153.8. IR (KBr) $v_{\max }: 3291,3069,2931$, 2887, 1615, 1515, 1451, 1424, 1326, 1220, 1129, 1090, 1018, 914, $836,763,699,545,516 \mathrm{~cm}^{-1}$. (MS $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}$ calcd $314.10\left[\mathrm{M}^{+}\right]$, obsd $337.57\left[\mathrm{M}^{+}+\mathrm{Na}\right]$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 57.32; H, 4.49; N, 17.83. Found: C, 57.26; H, 4.21; N, 17.73. Mp: $116-118^{\circ} \mathrm{C}$.

Acknowledgment. We are grateful to Dr. B. Ganguly for preliminary computational results, Dr. E. Suresh for singlecrystal X-ray data, Miss D. Kuvadia for GC-MS data, Mr. V. Vakhani for microanalysis, Mr. H. Bhatt for NMR, and Dr. P. Paul for all-round analytical support. We are indebted to Dr. P. Harvey for pointing out errors in elemental analyses which have since been corrected. We thank the reviewers for their valuable comments. M.K.A. thanks UGC, New Delhi, for the award of a UGC-NET fellowship, and P.K.G. thanks CSIR, India, for support of this program.

Supporting Information Available: Solvent and reagent optimization; GC-MS of crude products; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra; and combined crystallographic information files in CIF format for 2,4-DNP derivatives of compounds of entries 2, 9 , and 10, Table 1, with CCDC nos. CCDC-739028, CCDC738835, and CCDC-738836, respectively. This material is available free of charge via the Internet at http://pubs.acs.org.

[^0]: *To whom correspondence should be addressed. Fax: (+) 91-2782567562.
 (1) Reich, H. J.; Peake, S. L. J. Am. Chem. Soc. 1978, 100, 4888.
 (2) (a) Willgerodt, C. J. Prakt. Chem. 1886, 33, 154. (b) Boeckman, R. K.; Shao, P.; Mullins, J. J. Organic Syntheses; Wiley: New York, 2004; Collect. Vol. X, p 696; 2000, 77, 141. (c) Zhdankin, V. J.; Stang, P. J. Chem. Rev. 2008, 108 , 5299. (d) Richardson, R. D.; Wirth, T. Angew. Chem., Int. Ed. 2006, 45, 4402. (e) Zhdankin, V. J.; Stang, P. J. Chem. Rev. 2002, 102, 2523. (f) Wirth, T. Angew. Chem., Int. Ed. 2005, 44, 3656. (g) Page, T. K.; Wirth, T. Synthesis 2006, 18 , 3153.

[^1]: (3) (a) Jolles, Z. E. Bromine and Its Compounds; Ernest Benn Ltd.: London, 1966; p 188. (b) Seery, D. J.; Britton, D. J. Phys. Chem. 1964, 68, 2263.
 (4) At room temperature, $2-3 \%$ of acetophenone was formed along with the phenyl acetaldehyde.
 (5) Given that there is only 0.43 mol total of Br in this reagent per mole of iodine in substrate taken, all of the I from the substrate cannot be in the form of IBr in this case.

[^2]: (9) Under the reaction conditions prevailing with $1: 2 \mathrm{BrO}_{3}{ }^{-} / \mathrm{Br}^{-}$reagent, the reactive species is likely to be $\mathrm{H}_{2} \mathrm{OBr}^{+}$resulting in a strongly electrophilic bromonium ion: Gilow, H. M.; Ridd, J. H. J. Chem. Soc., Perkin Trans. 2 1973, 1321. Rao, T. S.; Mali, S. I.; Damgat, V. T. Tetrahedron 1978, 34, 205. With $4: 1 \mathrm{BrO}_{3}^{-} / \mathrm{Br}^{-}$, still more reactive intermediates such as asymmetric $\mathrm{Br}_{2} \mathrm{O}_{2}$ are possible: Taube, H.; Dodgen, H. J. Am. Chem. Soc. 1949, 71, 3330 apart from the participation of IBr in the reaction. ${ }^{5}$

[^3]: (10) (a) Alem, K. V.; Lodder, G.; Zuilhof, H. J. Phys. Chem. A 2002, 106, 10681. (b) Smith, M. B.; March, J. March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure; Wiley: New York, 2007; Vol. 6, p 446.
 (11) All geometries were fully optimized with the Becke3 Lee-Yang-Parr (B3LYP) method: Becke, A. D. J. Chem. Phys. 1993, 98, 5648. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. The reactions used the pseudopotential basis set LACVP*: Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. Vibrational analyses were also performed to confirm the local minima. All calculations were performed using Spartan'06 (Wavefunction, Inc.: Irvine, CA) quantum chemical program (Ganguly, B.; Kesharwani, M. K.; Agrawal, M. K.; Ghosh, P. K. Unpublished results).
 (12) For the substrate of entry 8 , Table 1 , the ground-state energies of the two conformers, i.e., phenyl antiperiplanar to I and H antiperiplanar to I, were nearly equal, the former being lower by only $0.3 \mathrm{kcal} / \mathrm{mol}$ at the same level of theory. ${ }^{11}$
 (13) All the iodohydrins employed in the present work were synthesized and isolated following the literature procedure: Agrawal, M. K.; Adimurthy, S.; Ganguly, B.; Ghosh, P. K. Tetrahedron 2009, 65, 2791.

